skip to main content

Title: Effect of V and Ta on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel

12%Cr reduced activation ferrite/martensite steels are promising candidate materials for good corrosion and irradiation resistance used for supercritical water-cooled reactor cladding and in-core components. V and Ta are considered to have improved the creep strength of high Cr steels by precipitating as MX phase. In this paper, a series of trial products microalloyed with V and V–Ta are produced, and the microstructure is characterized after quenching at 1050 °C and tempering at 780 °C by using TEM method to investigate the effect of these elements on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel. The results from both the experimental observations and thermodynamic and kinetic calculations reveal that V and V–Ta can promote the stable MX precipitation instead of M{sub 2}X, thus increasing the volume fraction of M{sub 23}C{sub 6}. Two-phase separation behavior of the (Ta, V)(C, N) carbonitride into a Ta(V)C(N) phase and a V(Ta)N(C) phase in 12Cr3WVTa steel is observed and further discussed. - Highlights: • Microalloyed with V and V-Ta can promote the precipitation of MX instead of M{sub 2}X. • The presence of delta-ferrite in microstructure affects the morphology of MX. • Two-phase separation of MX carbonitride was observed in 12Cr3WVTa steel.
Authors:
 [1] ;  [1] ;  [2] ; ;  [1] ;  [1] ;  [3]
  1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)
  2. (China)
  3. (Pakistan)
Publication Date:
OSTI Identifier:
22285071
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 82; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; FERRITE; MARTENSITE; MICROSTRUCTURE; PRECIPITATION; STEELS; TRANSMISSION ELECTRON MICROSCOPY; WATER COOLED REACTORS