skip to main content

Title: Time evolution of temperature and entropy of various collapsing domain walls

We investigate the time evolution of the temperature and entropy of gravitationally collapsing shells of matter, represented by domain walls, as seen by an asymptotic observer. In particular, we seek to understand how topology and the addition of a cosmological constant affect the gravitational collapse. Previous work has shown that the entropy of a spherically symmetric collapsing domain approaches a constant. In this paper, we reproduce these results, using both a fully quantum and a semi-classical approach, then we repeat the process for a de Sitter Schwarzschild domain wall (spherical with cosmological constant) and a (3+1) BTZ domain wall (cylindrical). We do this by coupling a scalar field to the background of the domain wall and analyzing the spectrum of radiation as a function of time. We find that the spectrum is quasi-thermal, with the degree of thermality increasing as the domain wall approaches the horizon. The thermal distribution allows for the determination of the temperature as a function of time, and we find that the late time temperature is consistent with the Hawking temperature. From the temperature we find the entropy. Since the collapsing domain wall is what forms a black hole, we can compare the results to thosemore » of the standard entropy-area relation. We find that the entropy does in fact approach a constant that is consistent with the Hawking entropy. However, both the de Sitter Schwarzschild domain wall and the (3+1) BTZ domain wall show periods of decreasing entropy, which suggests that spontaneous collapse may be prevented.« less
Authors:
 [1]
  1. Department of Physics and Astronomy, Union College, Schenectady, NY 12308-2311 (United States)
Publication Date:
OSTI Identifier:
22282735
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2013; Journal Issue: 08; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASYMPTOTIC SOLUTIONS; BLACK HOLES; COMPARATIVE EVALUATIONS; COSMOLOGICAL CONSTANT; COUPLING; CYLINDRICAL CONFIGURATION; DE SITTER GROUP; DE SITTER SPACE; ENTROPY; EVOLUTION; GRAVITATIONAL COLLAPSE; SCALAR FIELDS; SCHWARZSCHILD METRIC; TIME DEPENDENCE