skip to main content

SciTech ConnectSciTech Connect

Title: The CMB modulation from inflation

Erickcek, Kamionkowski and Carroll proposed in 2008 that the dipole modulation of the CMB could be due to a very large scale perturbation of the field φ causing the primordial curvature perturbation. We repeat their calculation using weaker assumptions and the current data. If φ is the inflaton of any single-field inflation with the attractor behaviour, the asymmetry is almost certainly too small. If instead φ is any curvaton-type field (ie. one with the canonical kinetic term and a negligible effect during inflation) the asymmetry can agree with observation if |f{sub NL}| in the equilateral configuration is ≅ 10 for k{sup −1} = 1Gpc and ∼<3 for k{sup −1} = 1Mpc. An f{sub NL} with these properties can apparently be obtained from the curvaton with an axionic potential. Within any specific curvaton-type model, the function f{sub NL}(k{sub 1},k{sub 2},k{sub 3}) required to generate the asymmetry would be determined, and could perhaps already be confirmed or ruled out using existing Planck or WMAP data.
Authors:
 [1]
  1. Consortium for Fundamental Physics, Cosmology and Astroparticle Group, Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)
Publication Date:
OSTI Identifier:
22282699
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2013; Journal Issue: 08; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASYMMETRY; ATTRACTORS; AXIONS; DIPOLES; INFLATIONARY UNIVERSE; INFLATONS; MODULATION; PERTURBATION THEORY; RELICT RADIATION