skip to main content

SciTech ConnectSciTech Connect

Title: Solid inflation

We develop a cosmological model where primordial inflation is driven by a 'solid', defined as a system of three derivatively coupled scalar fields obeying certain symmetries and spontaneously breaking a certain subgroup of these. The symmetry breaking pattern differs drastically from that of standard inflationary models: time translations are unbroken. This prevents our model from fitting into the standard effective field theory description of adiabatic perturbations, with crucial consequences for the dynamics of cosmological perturbations. Most notably, non-gaussianities in the curvature perturbations are unusually large, with f{sub NL} ∼ 1/(εc{sub s}{sup 2}), and have a novel shape: peaked in the squeezed limit, with anisotropic dependence on how the limit is approached. Other unusual features include the absence of adiabatic fluctuation modes during inflation — which does not impair their presence and near scale-invariance after inflation — and a slightly blue tilt for the tensor modes.
Authors:
; ;  [1]
  1. Department of Physics and ISCAP, Columbia University, New York, NY 10027 (United States)
Publication Date:
OSTI Identifier:
22282664
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2013; Journal Issue: 10; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANISOTROPY; COSMOLOGICAL MODELS; COSMOLOGY; FIELD THEORIES; FLUCTUATIONS; PERTURBATION THEORY; SCALAR FIELDS; SCALE INVARIANCE; SOLIDS; SYMMETRY BREAKING; TENSORS