skip to main content

SciTech ConnectSciTech Connect

Title: Study of Mg{sub x}Cd{sub 1−x}O applying density functional theory: Stability, structural phase transition and electronic properties

Stability of B1 and B2 phases of Mg{sub x}Cd{sub 1−x}O is studied by calculating the formation energy within the framework of density functional theory applying the crystalline-orbital program package. Structural and electronic properties of the two polymorphs are reported for x=0.25, 0.50 and 0.75. The equilibrium lattice constants and bulk moduli are computed. Enthalpy calculations show pressure induced B1→B2 phase transitions at 92 GPa, 138 GPa and 212 GPa, respectively, for Mg{sub 0.25}Cd{sub 0.75}O, Mg{sub 0.50}Cd{sub 0.50}O and Mg{sub 0.75}Cd{sub 0.25}O compositions. Formation energy of ternary oxides in the B1 phase is negative with respect to mixing of B2-MgO with B1-CdO. Mixing B1-MgO with B2-CdO also leads to negative formation energy in Cd rich B1 phase ternary oxides (0≤x≤0.5). Band structure calculations predict direct band gaps in the B1 phase and indirect band gaps in the B2 phase ternary oxides. Mulliken population analysis is performed for the two polymorphs to study the charge transfer. - Graphical abstract: Diagram reveals trends in formation energy while mixing B2-MgO with B1-CdO to form B1-Mg{sub x}Cd{sub 1−x}O. Formation energies obtained from mixing isostructural and nonisostructural components are also shown. Display Omitted - Highlights: • Lattice constants and bulk moduli are computed for Mg{sub 0.25}Cd{submore » 0.75}O, Mg{sub 0.50}Cd{sub 0.50}O and Mg{sub 0.75}Cd{sub 0.25}O compositions. • Enthalpy calculations signify pressure induced B1→B2 phase transitions at 92 GPa, 138 GPa and 212 GPa, respectively, in Mg{sub 0.25}Cd{sub 0.75}O, Mg{sub 0.50}Cd{sub 0.50}O and Mg{sub 0.75}Cd{sub 0.25}O. • Band structure calculations predict direct band gaps in the B1 phase ternary oxides. • In the B2 phase ternary oxides band structure calculations show valence band maximum along the Γ–X direction and the conduction band minimum at the Γ point of symmetry.« less
Authors:
 [1] ;  [2] ; ;  [3] ;  [4] ;  [5]
  1. Department of Physics and Astronomical Sciences, Central University of Himachal Pradesh, Post Box 21, Dharamshala 176215 (India)
  2. (India)
  3. Department of Physics, M.L. Sukhadia University, Udaipur 313001 (India)
  4. Government Polytechnic College, Banswara 327001 (India)
  5. Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, D-53115 Bonn (Germany)
Publication Date:
OSTI Identifier:
22280725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 204; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CADMIUM OXIDES; DENSITY FUNCTIONAL METHOD; FORMATION HEAT; LATTICE PARAMETERS; MAGNESIUM OXIDES; MIXING; PHASE TRANSFORMATIONS; STABILITY