skip to main content

Title: Nuclear astrophysics and electron beams

Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.
Authors:
 [1]
  1. Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)
Publication Date:
OSTI Identifier:
22280719
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1563; Journal Issue: 1; Conference: Workshop to explore physics opportunities with intense, polarized electron beams at 50-300 MeV, Cambridge, MA (United States), 14-16 Mar 2013; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTROPHYSICS; CHIRALITY; ELECTRON BEAMS; ELECTRON REACTIONS; GRAVITATIONAL COLLAPSE; LIMITING VALUES; NEUTRON STARS; NEUTRONS; NONLUMINOUS MATTER; NUCLEAR FORCES; NUCLEAR STRUCTURE; QUANTUM CHROMODYNAMICS; SUPERNOVAE