skip to main content

SciTech ConnectSciTech Connect

Title: Magnetic field reversal of electric polarization and magnetoelectric phase diagram of the hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22}

Low magnetic field reversal of electric polarization has been demonstrated in the multiferroic Y-type hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22} single crystal. The maximum magnetoelectric coefficient at 200 K reaches 1065 ps/m near zero magnetic field. By a systematic investigation of magnetic field dependence of magnetic and dielectric responses at various temperatures, we obtained the magnetoelectric phase diagram describing the detailed evolution of the spin-induced ferroelectric phases with temperature and magnetic field. Below 225 K, the transverse spin cone can be stabilized at zero magnetic field, which is responsible for the reversal behavior of electric polarization. Our study reveals how to eventually achieve magnetic field reversal of electric polarization in hexaferrites at room temperature.
Authors:
; ; ; ;  [1]
  1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
Publication Date:
OSTI Identifier:
22280624
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM COMPOUNDS; BARIUM COMPOUNDS; COBALT COMPOUNDS; ELECTRICAL PROPERTIES; FERRITES; FERROELECTRIC MATERIALS; MAGNETIC FIELD REVERSAL; MAGNETIC FIELDS; MAGNETIC PROPERTIES; MONOCRYSTALS; PHASE DIAGRAMS; POLARIZATION; SPIN; STRONTIUM COMPOUNDS; TEMPERATURE DEPENDENCE; TEMPERATURE RANGE 0273-0400 K