skip to main content

SciTech ConnectSciTech Connect

Title: Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.
Authors:
; ; ; ; ;  [1] ; ;  [2] ; ;  [3] ;  [4] ; ;  [5] ; ;  [1] ;  [4]
  1. Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München (Germany)
  2. Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany)
  3. Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg (Germany)
  4. (Germany)
  5. Atominstitut, Technische Universität Wien, 1020 Wien (Austria)
Publication Date:
OSTI Identifier:
22280614
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMIC FORCE MICROSCOPY; COMPARATIVE EVALUATIONS; COUNTING RATES; COUPLING; CRYSTALS; DIAMONDS; EFFICIENCY; FINITE DIFFERENCE METHOD; FLUORESCENCE; NITROGEN; OPTICAL FIBERS; PHOTONS; QUANTUM INFORMATION; VACANCIES