skip to main content

Title: Quantum corrections to temperature dependent electrical conductivity of ZnO thin films degenerately doped with Si

ZnO thin films degenerately doped with Si (Si{sub x}Zn{sub 1−x}O) in the concentrations range of ∼0.5% to 5.8% were grown by sequential pulsed laser deposition on sapphire substrates at 400 °C. The temperature dependent resistivity measurements in the range from 300 to 4.2 K revealed negative temperature coefficient of resistivity (TCR) for the 0.5%, 3.8%, and 5.8% doped Si{sub x}Zn{sub 1−x}O films in the entire temperature range. On the contrary, the Si{sub x}Zn{sub 1−x}O films with Si concentrations of 1.0%, 1.7%, and 2.0% showed a transition from negative to positive TCR with increasing temperature. These observations were explained using weak localization based quantum corrections to conductivity.
Authors:
; ;  [1]
  1. Laser Materials Processing Division, Raja Ramanna Center for Advanced Technology, Indore 452 013 (India)
Publication Date:
OSTI Identifier:
22280519
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CONCENTRATION RATIO; CORRECTIONS; ELECTRIC CONDUCTIVITY; ENERGY BEAM DEPOSITION; LASER RADIATION; PULSED IRRADIATION; SAPPHIRE; SILICON; SUBSTRATES; TEMPERATURE COEFFICIENT; TEMPERATURE DEPENDENCE; TEMPERATURE RANGE 0000-0013 K; TEMPERATURE RANGE 0013-0065 K; TEMPERATURE RANGE 0065-0273 K; TEMPERATURE RANGE 0273-0400 K; THIN FILMS; ZINC OXIDES