skip to main content

Title: Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.
Authors:
;  [1]
  1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)
Publication Date:
OSTI Identifier:
22280284
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 104; Journal Issue: 20; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ADSORPTION; ADSORPTION HEAT; DISTRIBUTION FUNCTIONS; POROUS MATERIALS; SILICA GEL; WATER; WATER VAPOR; ZEOLITES