skip to main content

SciTech ConnectSciTech Connect

Title: Hematopoietic Stem and Progenitor Cell Migration After Hypofractionated Radiation Therapy in a Murine Model

Purpose: To characterize the recruitment of bone marrow (BM)-derived hematopoietic stem and progenitor cells (HSPCs) within tumor microenvironment after radiation therapy (RT) in a murine, heterotopic tumor model. Methods and Materials: Lewis lung carcinoma tumors were established in C57BL/6 mice and irradiated with 30 Gy given as 2 fractions over 2 days. Tumors were imaged with positron emission tomography/computed tomography (PET/CT) and measured daily with digital calipers. The HSPC and myelomonocytic cell content was assessed via immunofluorescent staining and flow cytometry. Functionality of tumor-associated HSPCs was verified in vitro using colony-forming cell assays and in vivo by rescuing lethally irradiated C57BL/6 recipients. Results: Irradiation significantly reduced tumor volumes and tumor regrowth rates compared with nonirradiated controls. The number of CD133{sup +} HSPCs present in irradiated tumors was higher than in nonirradiated tumors during all stages of regrowth. CD11b{sup +} counts were similar. PET/CT imaging and growth rate analysis based on standardized uptake value indicated that HSPC recruitment directly correlated to the extent of regrowth and intratumor cell activity after irradiation. The BM-derived tumor-associated HSPCs successfully formed hematopoietic colonies and engrafted irradiated mice. Finally, targeted treatment with a small animal radiation research platform demonstrated localized HSPC recruitment to defined tumor subsitesmore » exposed to radiation. Conclusions: Hypofractionated irradiation resulted in a pronounced and targeted recruitment of BM-derived HSPCs, possibly as a mechanism to promote tumor regrowth. These data indicate for the first time that radiation therapy regulates HSPC content within regrowing tumors.« less
Authors:
 [1] ;  [2] ; ; ; ; ;  [3] ;  [1]
  1. Department of Biological Sciences, Oakland University, Rochester, Michigan (United States)
  2. (United States)
  3. Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan (United States)
Publication Date:
OSTI Identifier:
22278304
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 87; Journal Issue: 5; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BONE MARROW; CARCINOMAS; FRACTIONATED IRRADIATION; IN VITRO; IN VIVO; LUNGS; MICE; POSITRON COMPUTED TOMOGRAPHY; RADIOTHERAPY