skip to main content

Title: The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels weremore » also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that heterozygosity for the nonsense mutation causes NMD degradation of the mutant transcripts blocking expression of the truncated mutant protein and an additional trans effect on lamin A protein levels expressed from the wild type allele. We discuss the possibility that skewing of the lamin A to lamin C ratio may contribute to ensuing processes that destabilize cardiomyocytes and trigger cardiomyopathy - Highlights: • We study disease mechanisms in DCM patients carrying PTC mutations in the LMNA gene. • The mutant transcript is degraded by the nonsense mediated mRNA decay system. • Skewed lamin A to lamin C protein ratio expressed from the wild type allele. • We suggest a combined pathomechanism: haploinsuffiency plus lamin A/C imbalance.« less
 [1] ;  [2] ;  [1] ;  [3] ;  [4] ;  [5] ;  [4] ;  [6] ;  [7] ;  [1]
  1. Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark)
  2. Department of Cardiology, Aarhus University Hospital, Aarhus (Denmark)
  3. Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus (Denmark)
  4. Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands)
  5. Department of Forensic Medicine, Bioanalytical Unit, University of Aarhus (Denmark)
  6. Department of Molecular Biology and Genetics, University of Aarhus (Denmark)
  7. Department of Cardiology, Odense University Hospital, Odense (Denmark)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Experimental Cell Research; Journal Volume: 319; Journal Issue: 19; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States