skip to main content

SciTech ConnectSciTech Connect

Title: In brown adipocytes, adrenergically induced β{sub 1}-/β{sub 3}-(G{sub s})-, α{sub 2}-(G{sub i})- and α{sub 1}-(G{sub q})-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α{sub 1}-adrenoceptor coupled via G{sub q}), clonidine (α{sub 2} via G{sub i}) or CL316243 (β{sub 3} via G{sub s}) or via β{sub 1}-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC{sub 50} 0.3 µM); a minor apparent effect of AG1478more » on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR-induced Erk1/2 activation. • α{sub 1}-, α{sub 2}-, β{sub 1}-, β{sub 3}-adrenoceptors all activate Erk1/2—but EGF receptor transactivation is not involved. • Adrenergic regulation of proliferation, apoptosis, differentiation must utilize cell-specific pathways in brown adipocytes. • EGF receptor transactivation is not universal in mediating GPCR-induced Erk1/2 activation.« less
Authors:
; ; ; ;
Publication Date:
OSTI Identifier:
22278179
Resource Type:
Journal Article
Resource Relation:
Journal Name: Experimental Cell Research; Journal Volume: 319; Journal Issue: 17; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ADIPOSE TISSUE; APOPTOSIS; CELL PROLIFERATION; GROWTH FACTORS; GTP-ASES; NORADRENALINE; PHOSPHORYLATION; RECEPTORS