skip to main content

SciTech ConnectSciTech Connect

Title: Modeling and characterizing anisotropic inclusion orientation in heterogeneous material via directional cluster functions and stochastic microstructure reconstruction

We present a framework to model and characterize the microstructure of heterogeneous materials with anisotropic inclusions of secondary phases based on the directional correlation functions of the inclusions. Specifically, we have devised an efficient method to incorporate both directional two-point correlation functions S{sub 2} and directional two-point cluster functions C{sub 2} that contain non-trivial topological connectedness information into the simulated annealing microstructure reconstruction procedure. Our framework is applied to model an anisotropic aluminum alloy and the accuracy of the reconstructed structural models is assessed by quantitative comparison with the actual microstructure obtained via x-ray tomography. We show that incorporation of directional clustering information via C{sub 2} significantly improves the accuracy of the reconstruction. In addition, a set of analytical “basis” correlation functions are introduced to approximate the actual S{sub 2} and C{sub 2} of the material. With the proper choice of basis functions, the anisotropic microstructure can be represented by a handful of parameters including the effective linear sizes of the iron-rich and silicon-rich inclusions along three orthogonal directions. This provides a general and efficient means for heterogeneous material modeling that enables one to significantly reduce the data set required to characterize the anisotropic microstructure.
Authors:
;  [1]
  1. Materials Science and Engineering, Arizona State University, Arizona 85287-6206 (United States)
Publication Date:
OSTI Identifier:
22277927
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 9; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM ALLOYS; ANGULAR CORRELATION; ANISOTROPY; ANNEALING; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; CORRELATION FUNCTIONS; INCLUSIONS; IRON; MICROSTRUCTURE; SILICON; STOCHASTIC PROCESSES; TOMOGRAPHY; X RADIATION