skip to main content

Title: Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb{sub 2}MB{sub 2} (M=Fe, Ru, Os) from first principles calculations

The Nb{sub 2}FeB{sub 2} phase (U{sub 3}Si{sub 2}-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb{sub 2}OsB{sub 2} (space group P4/mnc, no. 128, a twofold superstructure of U{sub 3}Si{sub 2}-type) with distorted Nb-layers and Os{sub 2}-dumbbells was recently achieved, “Nb{sub 2}RuB{sub 2}” is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb{sub 2}FeB{sub 2} and Nb{sub 2}OsB{sub 2}, but also predict “Nb{sub 2}RuB{sub 2}” to crystalize with the Nb{sub 2}OsB{sub 2} structure type. According to chemical bonding analysis, the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic M–B, B–Nb and M–Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb{sub 2}FeB{sub 2}, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them. --more » Graphical abstract: Nb{sub 2}FeB{sub 2} (U{sub 3}Si{sub 2} structure type, space group P4/mbm, no. 127) is predicted to order antiferromagnetically, due to the presence of iron chains which show ferromagnetic interactions in the chains and antiferromagnetic interactions between them. “Nb{sub 2}RuB{sub 2}” is predicted to crystallize with the recently discovered Nb{sub 2}OsB{sub 2} twofold superstructure (space group P4/mnc, no. 128) of U{sub 3}Si{sub 2} structure type. The building of ruthenium dumbbells instead of chains along [001] is found to be responsible for the stabilization of this superstructure. Highlights: • Nb{sub 2}FeB{sub 2} is predicted to order antiferromagnetically. • Ferromagnetic interactions found in iron chains and antiferromagnetic ones between them. • Unknown “Nb{sub 2}RuB{sub 2}” predicted to crystallize with a twofold U{sub 3}Si{sub 2} superstructure. • Puckering of Nb-layer and Ru-dumbbell formation responsible for superstructure occurrence.« less
Authors:
;
Publication Date:
OSTI Identifier:
22275870
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 211; Journal Issue: Complete; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANTIFERROMAGNETISM; CHEMICAL BONDS; CRYSTALS; DENSITY; DENSITY FUNCTIONAL METHOD; EXCHANGE INTERACTIONS; FERMI LEVEL; IRON; MAGNETIC PROPERTIES; NIOBIUM BORIDES; RUTHENIUM; SPACE GROUPS; STABILITY; STABILIZATION; SYNTHESIS; TETRAGONAL LATTICES; URANIUM SILICIDES