skip to main content

SciTech ConnectSciTech Connect

Title: An analytical model for analyzing the current-voltage characteristics of bulk heterojunction organic solar cells

An analytical model for analyzing the current-voltage (J-V) characteristics of bulk heterojunction (BHJ) organic solar cells is developed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs), carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun's model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The charge carrier concentrations and hence the photocurrent are calculated by solving the carrier continuity equation for both holes and electrons in the organic layer. The overall load current is calculated considering the actual solar spectrum and voltage dependent forward dark current. The model is verified by published experimental results. The efficiency of the P3HT:PCBM based solar cells critically depends on the dissociation of bound EHPs. On the other hand, cells made of a blend of the conjugated polymer (PCDTBT) with the soluble fullerene derivative (PCBM) show nearly unity dissociation efficiency, and their cell efficiency strongly depends on the charge collection efficiency. The effects of carrier lifetimes on the performance of PCDTBT solar cells have also been studied. The model is also used to investigate the effect of titanium oxide (TiO{sub x}) layer (at the back contact) on the J-V characteristics ofmore » PCDTBT solar cells. The results of this paper indicate that improvement of charge carrier transport in PCDTBT:PCBM blend and dissociation of bound EHPs in P3HT:PCBM blend are extremely important to increase the power conversion efficiency of the respective BHJ solar cells.« less
Authors:
;  [1]
  1. Department of Electrical and Computer Engineering, Concordia University, 1455 Blvd. de Maisonneuve West, Montreal, Quebec H3G 1M8 (Canada)
Publication Date:
OSTI Identifier:
22275786
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CARRIER LIFETIME; CHARGE CARRIERS; CHARGE COLLECTION; CONCENTRATION RATIO; CONTINUITY EQUATIONS; DISSOCIATION; ELECTRIC CONDUCTIVITY; ELECTRIC CURRENTS; ELECTRIC POTENTIAL; ENERGY EFFICIENCY; FULLERENES; HETEROJUNCTIONS; HOLES; ORGANIC POLYMERS; ORGANIC SOLAR CELLS; PHOTONS; TITANIUM OXIDES