skip to main content

SciTech ConnectSciTech Connect

Title: Structures, electrical properties, and leakage current behaviors of un-doped and Mn-doped lead-free ferroelectric K{sub 0.5}Na{sub 0.5}NbO{sub 3} films

Lead-free ferroelectric un-doped and doped K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) films with different amounts of manganese (Mn) were prepared by a chemical solution deposition method. The thicknesses of all films are about 1.6 μm. Their phase, microstructure, leakage current behavior, and electrical properties were investigated. With increasing the amounts of Mn, the crystallinity became worse. Fortunately, the electrical properties were improved due to the decreased leakage current density after Mn-doping. The study on leakage behaviors shows that the dominant conduction mechanism at low electric field in the un-doped KNN film is ohmic mode and that at high electric field is space-charge-limited and Pool-Frenkel emission. After Mn doping, the dominant conduction mechanism at high electric field of KNN films changed single space-charge-limited. However, the introduction of higher amount of Mn into the KNN film would lead to a changed conduction mechanism from space-charge-limited to ohmic mode. Consequently, there exists an optimal amount of Mn doping of 2.0 mol. %. The 2.0 mol. % Mn doped KNN film shows the lowest leakage current density and the best electrical properties. With the secondary ion mass spectroscopies and x-ray photoelectron spectroscopy analyses, the homogeneous distribution in the KNN films and entrance of Mn element in the lattice of KNNmore » perovskite structure were also confirmed.« less
Authors:
; ; ;  [1]
  1. Electronic Material Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049 (China)
Publication Date:
OSTI Identifier:
22275781
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CUBIC LATTICES; DOPED MATERIALS; ELECTRIC FIELDS; ELECTRICAL PROPERTIES; FERROELECTRIC MATERIALS; ION MICROPROBE ANALYSIS; LEAKAGE CURRENT; MANGANESE; MASS SPECTROSCOPY; MICROSTRUCTURE; NIOBATES; POTASSIUM COMPOUNDS; SODIUM COMPOUNDS; SPACE CHARGE; THIN FILMS; URANIUM NITRIDES; X-RAY PHOTOELECTRON SPECTROSCOPY