skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Study on electrical properties of metal/GaSb junctions using metal-GaSb alloys

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4862486· OSTI ID:22275712
; ; ; ;  [1];  [2]
  1. The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
  2. NTT Photonics Laboratories, NTT Corporation, Atsugi 243-0198 (Japan)

We study the metal-GaSb alloy formation, the structural properties and the electrical characteristics of the metal-alloy/GaSb diodes by employing metal materials such as Ni, Pd, Co, Ti, Al, and Ta, in order to clarify metals suitable for GaSb p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) as metal-GaSb alloy source/drain (S/D). It is found that Ni, Pd, Co, and Ti can form alloy with GaSb by rapid thermal annealing at 250, 250, 350, and 450 °C, respectively. The Ni-GaSb and Pd-GaSb alloy formation temperature of 250 °C is lower than the conventional dopant activation annealing for ion implantation, which enable us to lower the process temperature. The alloy layers show lower sheet resistance (R{sub Sheet}) than that of p{sup +}-GaSb layer formed by ion implantation and activation annealing. We also study the electrical characteristics of the metal-alloy/GaSb junctions. The alloy/n-GaSb contact has large Schottky barrier height (ϕ{sub B}) for electrons, ∼0.6 eV, and low ϕ{sub B} for holes, ∼0.2 eV, which enable us to realize high on/off ratio in pMOSFETs. We have found that the Ni-GaSb/GaSb Schottky junction shows the best electrical characteristics with ideal factor (n) of 1.1 and on-current/off-current ratio (I{sub on}/I{sub off}) of ∼10{sup 4} among the metal-GaSb alloy/GaSb junctions evaluated in the present study. These electrical properties are also superior to those of a p{sup +}-n diode fabricated by Be ion implantation with activation annealing at 350 °C. As a result, the Ni-GaSb alloy can be regarded as one of the best materials to realize metal S/D in GaSb pMOSFETs.

OSTI ID:
22275712
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English