skip to main content

Title: Direct observation of bias-dependence potential distribution in metal/HfO{sub 2} gate stack structures by hard x-ray photoelectron spectroscopy under device operation

Although gate stack structures with high-k materials have been extensively investigated, there are some issues to be solved for the formation of high quality gate stack structures. In the present study, we employed hard x-ray photoelectron spectroscopy in operating devices. This method allows us to investigate bias dependent electronic states, while keeping device structures intact. Using this method, we have investigated electronic states and potential distribution in gate metal/HfO{sub 2} gate stack structures under device operation. Analysis of the core levels shifts as a function of the bias voltage indicated that a potential drop occurred at the Pt/HfO{sub 2} interface for a Pt/HfO{sub 2} gate structure, while a potential gradient was not observed at the Ru/HfO{sub 2} interface for a Ru/HfO{sub 2} gate structure. Angle resolved photoelectron spectroscopy revealed that a thicker SiO{sub 2} layer was formed at the Pt/HfO{sub 2} interface, indicating that the origin of potential drop at Pt/HfO{sub 2} interface is formation of the thick SiO{sub 2} layer at the interface. The formation of the thick SiO{sub 2} layer at the metal/high-k interface might concern the Fermi level pinning, which is observed in metal/high-k gate stack structures.
Authors:
 [1] ;  [2] ; ;  [3] ;  [1]
  1. National Institute for Materials Science, Advanced Electric Materials Center, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)
  2. (Japan)
  3. National Institute for Materials Science, NIMS Beamline Station at SPring-8, 1-1-1 Kôto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)
Publication Date:
OSTI Identifier:
22275599
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ELECTRIC POTENTIAL; ELECTRONIC STRUCTURE; FERMI LEVEL; HAFNIUM OXIDES; HARD X RADIATION; INTERFACES; LAYERS; PHOTOELECTRON SPECTROSCOPY; PLATINUM; POTENTIALS; RUTHENIUM; SILICON OXIDES