skip to main content

Title: Atomistic simulation study of short pulse laser interactions with a metal target under conditions of spatial confinement by a transparent overlayer

The distinct characteristics of short pulse laser interactions with a metal target under conditions of spatial confinement by a solid transparent overlayer are investigated in a series of atomistic simulations. The simulations are performed with a computational model combining classical molecular dynamics (MD) technique with a continuum description of the laser excitation, electron-phonon equilibration, and electronic heat transfer based on two-temperature model (TTM). Two methods for incorporation of the description of a transparent overlayer into the TTM-MD model are designed and parameterized for Ag-silica system. The material response to the laser energy deposition is studied for a range of laser fluences that, in the absence of the transparent overlayer, covers the regimes of melting and resolidification, photomechanical spallation, and phase explosion of the overheated surface region. In contrast to the irradiation in vacuum, the spatial confinement by the overlayer facilitates generation of sustained high-temperature and high-pressure conditions near the metal-overlayer interface, suppresses the generation of unloading tensile wave, decreases the maximum depth of melting, and prevents the spallation and explosive disintegration of the surface region of the metal target. At high laser fluences, when the laser excitation brings the surface region of the metal target to supercritical conditions, the confinementmore » prevents the expansion and phase decomposition characteristic for the vacuum conditions leading to a gradual cooling of the hot compressed supercritical fluid down to the liquid phase and eventual solidification. The target modification in this case is limited to the generation of crystal defects and the detachment of the metal target from the overlayer.« less
Authors:
; ; ;  [1] ; ;  [2]
  1. Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, Virginia 22904-4745 (United States)
  2. Electro Scientific Industries, Inc., 13900 NW Science Park Drive, Portland, Oregon 97229 (United States)
Publication Date:
OSTI Identifier:
22275576
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 18; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; COMPUTERIZED SIMULATION; CRYSTAL DEFECTS; ENERGY ABSORPTION; ENERGY LOSSES; EXCITATION; LAYERS; LIQUIDS; MELTING; MOLECULAR DYNAMICS METHOD; PRESSURE DEPENDENCE; SILICA; SILVER; SURFACES; TEMPERATURE DEPENDENCE