skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear reaction uncertainties, massive gravitino decays and the cosmological lithium problem

Journal Article · · Journal of Cosmology and Astroparticle Physics
 [1];  [2];  [3]; ;  [4]
  1. Joint Institute for Nuclear Astrophysics (JINA), National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, East Lansing, MI 48824 (United States)
  2. TH Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)
  3. Center for Theoretical Astrophysics, Departments of Astronomy and of Physics, University of Illinois, Urbana, IL 61801 (United States)
  4. School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

We consider the effects of uncertainties in nuclear reaction rates on the cosmological constraints on the decays of unstable particles during or after Big-Bang nucleosynthesis (BBN). We identify the nuclear reactions due to non-thermal hadrons that are the most important in perturbing standard BBN, then quantify the uncertainties in these reactions and in the resulting light-element abundances. These results also indicate the key nuclear processes for which improved cross section data would allow different light-element abundances to be determined more accurately, thereby making possible more precise probes of BBN and evaluations of the cosmological constraints on unstable particles. Applying this analysis to models with unstable gravitinos decaying into neutralinos, we calculate the likelihood function for the light-element abundances measured currently, taking into account the current experimental errors in the determinations of the relevant nuclear reaction rates. We find a region of the gravitino mass and abundance in which the abundances of deuterium, {sup 4}He and {sup 7}Li may be fit with χ{sup 2} = 5.5, compared with χ{sup 2} = 31.7 if the effects of gravitino decays are unimportant. The best-fit solution is improved to χ{sup 2} ∼ 2.0 when the lithium abundance is taken from globular cluster data. Some such re-evaluation of the observed light-element abundances and/or nuclear reaction rates would be needed if this region of gravitino parameters is to provide a complete solution to the cosmological {sup 7}Li problem.

OSTI ID:
22275361
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2010, Issue 10; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English