skip to main content

Title: Homochiral Cu(II) and Ni(II) malates with tunable structural features

Four new homochiral metal–organic frameworks (MOFs) based on S-malate anions and N-donor linkers of different length have been prepared under solvothermal conditions. [Cu(mal)(bpy)]·H{sub 2}O (1), [Cu(mal)(bpe)]·2H{sub 2}O (2), [Ni(mal)(bpy)]·1.3CH{sub 3}OH (3) and [Ni(mal)(bpe)]·4H{sub 2}O (4) (mal=S-malate, bpy=4,4′-bipyridil, bpe=trans-1,2-bis(4-pyridyl)ethylene) were characterized by a number of analytical methods including powder X-ray diffraction, elemental, thermogravimetric analyses, IR spectroscopy. Compounds 1–3 were structurally characterized by X-ray crystallography. The absence of the chiral ligand racemization under synthetic conditions was unambiguously confirmed by polarimetry experiments. Compounds 1 and 2 contain metal-malate layered motives, connected by N-donor linkers and contribute to the family of isoreticular Cu(II) malates and tartrates [Cu(mal)L] and [Cu(tart)L], (tart=tartrate; L=ditopic rigid organic ligand). The Ni-based compounds 3 and 4 share 1D chiral (Ni(mal)) motives and possess novel type of the chiral framework, previously unknown for chiral carboxylates. The linear N-donor linkers connect these chiral chains, thus controlling the channel diameter and guest accessible volume of the homochiral structure, which exceeds 60 %. - Graphical abstract: Four new homochiral metal–organic frameworks are built from Ni{sup 2+} or Cu{sup 2+} cations, S-malate anions and N-donor linkers of different length, which controls the size of pores and guest accessible volume of the homochiral structure. Display Omittedmore » - Highlights: • Four new homohiral metal–organic frameworks based on Ni{sup 2+} and Cu{sup 2+}. • Cu(II)–malate layers and Ni(II)–malate chains are connected by N-donor linkers. • N-donor linkers of different length control the size of pores.« less
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [3] ;  [1] ;  [2]
  1. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev av., 630090 Novosibirsk (Russian Federation)
  2. (Russian Federation)
  3. (Korea, Republic of)
Publication Date:
OSTI Identifier:
22274204
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 210; Journal Issue: 1; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANIONS; CATIONS; CHIRALITY; CONTROL; COPPER; COPPER IONS; CRYSTALLOGRAPHY; ETHYLENE; INFRARED SPECTRA; LIGANDS; NICKEL; NICKEL IONS; POLARIMETRY; POWDERS; RACEMIZATION; THERMAL GRAVIMETRIC ANALYSIS; X RADIATION; X-RAY DIFFRACTION