skip to main content

SciTech ConnectSciTech Connect

Title: The layered antimonides RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho). Filled derivatives of the CaAl{sub 2}Si{sub 2} structure type

Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–lithium–antimonides with the formula RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho). They crystallize in the trigonal space group P3{sup ¯}m1 (No. 164, Pearson symbol hP6) with a structure, best viewed as a filled derivative of the common CaAl{sub 2}Si{sub 2} structure type (ternary variant of α-La{sub 2}O{sub 3}). Across the series, the lattice parameters monotonically decrease, following the lanthanide contraction. Temperature-dependent magnetic susceptibility measurements for CeLi{sub 3}Sb{sub 2}, PrLi{sub 3}Sb{sub 2} and TbLi{sub 3}Sb{sub 2} reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with the expected ones for the free-ion RE{sup 3+} ground state. Possible ferromagnetic ordering for PrLi{sub 3}Sb{sub 2} and antiferromagnetic ordering for TbLi{sub 3}Sb{sub 2} are observed in the low temperature range (below 20 K). Tight-binding muffin-tin orbital electronic band structure calculations for LaLi{sub 3}Sb{sub 2} are presented and discussed as well. - Graphical abstract: The large family of rare-earth metal–lithium–antimonides with the formula RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho) crystallize in the trigonal space group P3{sup ¯}m1 (No. 164, Pearson symbol hP6) with a structure that is a filled derivative of the CaAl{sub 2}Si{sub 2} structuremore » type (ternary variant of α-La{sub 2}O{sub 3}). Display Omitted - Highlights: • RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho) constitute an extended family of rare-earth metal–lithium–antimonides. • The layered structure is a filled derivative of the common CaAl{sub 2}Si{sub 2} structure type. • The valence electron count follows the Zintl–Klemm rules. • Electronic band structure calculations for LaLi{sub 3}Sb{sub 2} indicate small band-gap semiconducting behavior.« less
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22274198
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 210; Journal Issue: 1; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANTIFERROMAGNETISM; ANTIMONIDES; ANTIMONY; CRYSTAL STRUCTURE; ELECTRONIC STRUCTURE; GROUND STATES; LANTHANUM OXIDES; LATTICE PARAMETERS; LITHIUM; MAGNETIC SUSCEPTIBILITY; MONOCRYSTALS; MUFFIN-TIN POTENTIAL; PARAMAGNETISM; RARE EARTHS; RHENIUM IONS; SPACE GROUPS; SYNTHESIS; TEMPERATURE DEPENDENCE; X-RAY DIFFRACTION