skip to main content

SciTech ConnectSciTech Connect

Title: Electronic environments in Ni{sub 3}Pb{sub 2}S{sub 2} (shandite) and its initial oxidation in air

Polycrystalline Ni{sub 3}Pb{sub 2}S{sub 2} (shandite) was synthesised as a non-porous ingot to enable representative surfaces prepared by fracture under UHV to be characterised by X-ray photoelectron spectroscopy (XPS) before and after exposure to air. For an unoxidised surface, the S 2p{sub 3/2} binding energy was found to be significantly lower than those reported previously for shandite itself and other sulfides having shandite structure, and consistent with the physical and chemical properties of the shandites. The core electron binding energies for the three constituent elements were in agreement with the formal oxidation state representation Ni{sup 0}{sub 3}Pb{sup II}{sub 2}S{sup −II}{sub 2}, analogous to that deduced previously for Ni{sub 3}Sn{sub 2}S{sub 2}. Shandite surfaces were found to oxidise rapidly when initially exposed to air under ambient conditions, and concomitant with the formation of the Ni–O and Pb–O species, to restructure to NiS- and PbS-like surface phases having S core electron binding energies no higher than those for shandite. - Graphical abstract: Shandite ingot fracture surface in sample holder. Display Omitted - Highlights: • Shandite synthesised as ingot so that fracture surfaces were representative of bulk. • Surfaces prepared by fracture in vacuum characterised by XPS. • S 2p{sub 3/2} binding energymore » in range expected and lower than reported previously. • Ni, Pb and S core electron binding energies consistent with Ni{sup 0}{sub 3}Pb{sup II}{sub 2}S{sup −II}{sub 2}.« less
Authors:
;  [1] ;  [2]
  1. Ian Wark Research Institute, ARC Special Research Centre for Particle and Material Interfaces, University of South Australia, Mawson Lakes, SA 5095 (Australia)
  2. School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia)
Publication Date:
OSTI Identifier:
22274101
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 206; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BINDING ENERGY; CHEMICAL PROPERTIES; FRACTURES; OXIDATION; POLYCRYSTALS; POROUS MATERIALS; SAMPLE HOLDERS; SURFACES; SYNTHESIS; X-RAY PHOTOELECTRON SPECTROSCOPY