skip to main content

SciTech ConnectSciTech Connect

Title: On the crystal energy and structure of A{sub 2}Ti{sub n}O{sub 2n+1} (A=Li, Na, K) titanates by DFT calculations and neutron diffraction

First-principles quantum-mechanical calculations (CRYSTAL09 code, B3LYP functional) were performed on alkali titanates A{sub 2}Ti{sub n}O{sub 2n+1} with layered structure (n=3,4,6). Monoclinic structural types with unshifted (P2{sub 1}/m) and with shifted (C2/m) layers were considered. Crystal energies and full structural details were obtained for all Li, Na, and K phases. Neutron diffraction data were collected on powder samples of P2{sub 1}/m-Li{sub 2}Ti{sub 3}O{sub 7} (a=9.3146(3), b=3.7522(1), c=7.5447(3) Å, β=97.611(4)°) and C2/m-K{sub 2}Ti{sub 4}O{sub 9} (a=18.2578(8), b=3.79160(9), c=12.0242(4) Å, β=106.459(4)°) and their structures were Rietveld-refined. Computed energies show the P2{sub 1}/m arrangement as favoured over the C2/m one for n=3, and the opposite holds for n=6. In the n=4 case the P2{sub 1}/m configuration is predicted to be more stable for Li and Na, and the C2/m one for K titanates. Analysis of Li–O and K–O crystal-chemical environments from experiment and theory shows that the alkali atom bonding is stabilized/destabilized in the different phases consistently with the energy trend. - Graphical abstract: Display Omitted - Highlights: • The P2{sub 1}/m structure-type is found to be more stable for A{sub 2}Ti{sub 3}O{sub 7} layer titanates. • The C2/m structure-type is found to be more stable for A{sub 2}Ti{sub 6}O{sub 13} layer titanates. •more » Tetratitanates are predicted to prefer the P2{sub 1}/m (Li and Na) or C2/m (K) structure. • Li–O and K–O bond distances follow a trend consistent with computed phase energies.« less
Authors:
 [1] ;  [1] ;  [2]
  1. Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy)
  2. ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom)
Publication Date:
OSTI Identifier:
22274071
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 205; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; BOND LENGTHS; COMPUTER CALCULATIONS; CRYSTALS; FORMATION HEAT; LAYERS; MONOCLINIC LATTICES; NEUTRON DIFFRACTION; POWDERS; TITANATES