skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic structure of Sr{sub 2}Fe{sub 2}O{sub 5} brownmillerite by single-crystal Mössbauer spectroscopy

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]; ;  [2]
  1. UCQR, IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, CFMC-UL, Estrada Nacional 10, 2686-953 Sacavém (Portugal)
  2. School of Chemistry, The University of Sydney, Sydney 2006 (Australia)

In order to determine orientation of the Fe{sup 3+} magnetic moments and electric field gradient (efg) axes in the brownmillerite-type strontium ferrite structure for both iron sublattices where the efg tensor is not axially symmetric, the Mössbauer spectra of powdered and oriented single-crystal Sr{sub 2}Fe{sub 2}O{sub 5} were analyzed by solving the complete Hamiltonian for hyperfine interactions in the excited and ground states of the {sup 57}Fe nuclei. The magnetic moments of both octahedrally and tetrahedrally coordinated iron cations lie on the ac-plane of the orthorhombic unit cell and are parallel to the shortest c-axis, whilst the main efg axes are parallel to the longest crystallographic axis, b. This orientation is similar to that in Ca{sub 2}Fe{sub 2}O{sub 5}, in spite of the structural differences of strontium and calcium ferrite brownmillerites at low temperatures. - Graphical abstract: Mössbauer spectra of powdered and oriented single-crystal Sr{sub 2}Fe{sub 2}O{sub 5}, analyzed by solving the complete Hamiltonian for hyperfine interactions in the excited and ground states of the {sup 57}Fe nuclei, show that the magnetic moments of both octahedrally and tetrahedrally coordinated iron cations are parallel to the shortest c-axis of the orthorhombic brownmillerite unit cell . Display Omitted - Highlights: • Single-crystal Mössbauer spectroscopy is used to study magnetic structure of Sr{sub 2}Fe{sub 2}O{sub 5}. • Complete Hamiltonian for hyperfine interactions in excited and ground states was solved. • Fe{sup 3+} magnetic moments are parallel to the shortest crystallographic axis c. • The orientation of nuclear electric field gradient is similar to that in Ca{sub 2}Fe{sub 2}O{sub 5}.

OSTI ID:
22274063
Journal Information:
Journal of Solid State Chemistry, Vol. 205; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English