skip to main content

SciTech ConnectSciTech Connect

Title: Synthesis and characterization of polymorphs of photoluminescent Eu(III)-(2,5-furandicarboxylic acid, oxalic acid) MOFs

A novel metal organic framework (MOF) formulated as [Eu(H{sub 2}O){sub 2}(fdc)(ox){sub 0.5}·(H{sub 2}O)]{sub n} (1, fdc{sup 2−}=2,5-furandicarboxylate, ox{sup 2−}=oxalate), was hydrothermally synthesized via in situ ox{sup 2−} generation from the partial decomposition of the fdc{sup 2−} ligand. This material crystallizes in the monoclinic space group C2/c, unit cell parameters of 1: a=16.7570(10), b=10.5708(7), c=13.5348(14) Å, β=116.917(2)° (Z=8), and exhibits a three-dimensional (3D)-porous framework, with guest water molecules residing in the channel linking all other ligands (H{sub 2}O, ox{sup 2−}and fdc{sup 2−}) via hydrogen bonding interactions. Compound 2 is a polymorph of 1 crystallizing in monoclinic P21/c space group. The photoluminescence properties of 1 and 2 were studied at room temperature. The spectra show the typical Eu{sup 3+} red emission and the differences observed reflects the slightly different structures of these polymorphs. - Graphical abstract: Exploring metal organic framework polymorphism in the system Eu(H{sub 2}O){sub 2}(fdc)(ox){sub 0.5}·(H{sub 2}O)]{sub n} (fdc{sup 2−}=2,5-furandicarboxylate, ox{sup 2−}=oxalate) for tuning light emission. Display Omitted - Highlights: • Synthesis of Eu(III)-(2,5-furandicarboxylic acid, oxalic acid) MOF polymorphs. • Detailed single-crystal study of polymorphs including hydrogen-bonding networks. • Photoluminescence spectroscopy show subtle differences light emission properties.
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22274055
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 204; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DECOMPOSITION; EUROPIUM IONS; HYDROTHERMAL SYNTHESIS; INTERACTIONS; LIGANDS; MONOCLINIC LATTICES; MONOCRYSTALS; OXALIC ACID; PHOTOLUMINESCENCE; POLYMERS; POROUS MATERIALS; SPACE GROUPS; SPECTRA; SPECTROSCOPY