skip to main content

Title: Cyclic CO{sub 2} chemisorption–desorption behavior of Na{sub 2}ZrO{sub 3}: Structural, microstructural and kinetic variations produced as a function of temperature

A structural, microstructural and kinetic analysis of the Na{sub 2}ZrO{sub 3}–CO{sub 2} system was performed over 20 chemisorption–desorption cycles. Different cyclic experiments were performed between 500 and 800 °C. Although the best results were obtained in Na{sub 2}ZrO{sub 3} sample treated at 550 °C, all the samples treated between 500 and 700 °C presented good CO{sub 2} chemisorption efficiencies and stabilities. On the contrary, Na{sub 2}ZrO{sub 3} sample treated at 800 °C presented a continuous decrement of the CO{sub 2} chemisorption. After 20 cycles all the samples presented a partial Na{sub 2}ZrO{sub 3} decomposition, determined by the ZrO{sub 2} formation, which was associated to sodium sublimation. Additionally, the Na{sub 2}ZrO{sub 3} microstructural analysis showed a systematic morphological evolution. It was microscopically observed that Na{sub 2}ZrO{sub 3} particles tend to fracture due to the Na{sub 2}CO{sub 3} formation. Later, after several cycles these tiny fractured particles sinter producing new polyhedral and dense Na{sub 2}ZrO{sub 3}–ZrO{sub 2} particles. Finally, an exhaustive kinetic analysis showed a high CO{sub 2} chemisorption–desorption stability at different temperatures. - Graphical abstract: A CO{sub 2} chemisorption–desorption analysis was performed in the Na{sub 2}ZrO{sub 3}–CO{sub 2} system. Different cyclic experiments were performed between 500 and 800 °C and themore » results showed high CO{sub 2} chemisorption efficiencies. Nevertheless the Na{sub 2}ZrO{sub 3} composition and microstructure evolved during the cycles. Highlights: • Different CO{sub 2} chemisorption–desorption cycles were performed in the Na{sub 2}ZrO{sub 3} phase. • Na{sub 2}ZrO{sub 3} presents interesting microstructural changes depending on temperature. • At T≤550 °C, Na{sub 2}ZrO{sub 3} presents the best cyclability due to microstructural factors. • At T≥600 °C, Na{sub 2}ZrO{sub 3} presents a partial decomposition after 20 cycles. • Na{sub 2}ZrO{sub 3} presents excellent CO{sub 2} cyclability properties.« less
Authors:
;
Publication Date:
OSTI Identifier:
22274052
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 204; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; CARBON DIOXIDE; CHEMISORPTION; DECOMPOSITION; EFFICIENCY; FRACTURES; MICROSTRUCTURE; PARTICLES; SODIUM; SODIUM CARBONATES; STABILITY; SUBLIMATION; TEMPERATURE DEPENDENCE; THERMAL ANALYSIS; ZIRCONATES; ZIRCONIUM OXIDES