skip to main content

Title: Ultra-thin L1{sub 0}-FePt for perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves

Perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves (PSVs) with ultra-thin L1{sub 0}-FePt alloy free layer possessing high anisotropy and thermal stability have been fabricated and studied. The thickness of the L1{sub 0}-FePt layer was varied between 2 and 4 nm. The PSV became increasingly decoupled with reduced L1{sub 0}-FePt thickness due to the larger difference between the coercivity of the L1{sub 0}-FePt and [Co/Pd]{sub 30} films. The PSV with an ultra-thin L1{sub 0}-FePt free layer of 2 nm displayed a high K{sub u} of 2.21 × 10{sup 7} ergs/cm{sup 3}, high thermal stability of 84 and a largest giant magnetoresistance of 0.54%.
Authors:
; ;  [1] ;  [2] ;  [3]
  1. Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)
  2. Data Storage Institute, Agency of Science, Technology and Research (A-STAR), Singapore 117608 (Singapore)
  3. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074 (China)
Publication Date:
OSTI Identifier:
22273945
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 17; Conference: 55. annual conference on magnetism and magnetic materials, Atlanta, GA (United States), 14-18 Nov 2010; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANISOTROPY; COERCIVE FORCE; INTERFACES; INTERMETALLIC COMPOUNDS; IRON; LAYERS; MAGNETORESISTANCE; PALLADIUM; PHASE STABILITY; PLATINUM; SILVER; SPIN; THICKNESS; THIN FILMS; VALVES