skip to main content

Title: Millimeter wave ferromagnetic resonance in gallium-substituted ε-iron oxide

In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A new series of gallium-substituted ε-iron oxides (ε-Ga{sub x}Fe{sub 2−x}O{sub 3}) are synthesized which have ferromagnetic resonant frequencies appearing over the frequency range 30 GHz–150 GHz. The ε-Ga{sub x}Fe{sub 2−x}O{sub 3} is synthesized by the combination of reverse micelle and sol-gel techniques or the sol-gel method only. The particle sizes are observed to be smaller than 100 nm. In this paper, the free space magneto-optical approach has been employed to study these newly developed ε-Ga{sub x}Fe{sub 2−x}O{sub 3} particles in millimeter waves. This technique enables to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the millimeter wave frequency range from a single set of direct measurements. The transmittance and absorbance spectra of ε-Ga{sub x}Fe{sub 2−x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the xmore » parameter are found.« less
Authors:
;  [1] ;  [2]
  1. Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States)
  2. Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
Publication Date:
OSTI Identifier:
22273850
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 17; Conference: 55. annual conference on magnetism and magnetic materials, Atlanta, GA (United States), 14-18 Nov 2010; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION SPECTRA; ANISOTROPY; BARIUM COMPOUNDS; DIELECTRIC MATERIALS; FERRITES; FERROMAGNETIC RESONANCE; GALLIUM COMPOUNDS; GHZ RANGE; IRON OXIDES; MAGNETIC FIELDS; MAGNETIC PROPERTIES; PARTICLE SIZE; PARTICLES; SOL-GEL PROCESS; STRONTIUM COMPOUNDS