skip to main content

Title: Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films

We investigated the dependencies of both the magnetization characteristics and the perpendicular magnetic anisotropy of Co{sub x}Fe{sub 3–x}O{sub 4}(001) epitaxial films (x = 0.5 and 0.75) on the growth conditions of the reactive magnetron sputtering process. Both saturation magnetization and the magnetic uniaxial anisotropy constant K{sub u} are strongly dependent on the reactive gas (O{sub 2}) flow rate, although there is little difference in the surface structures for all samples observed by reflection high-energy electron diffraction. In addition, certain dead-layer-like regions were observed in the initial stage of the film growth for all films. Our results suggest that the magnetic properties of Co{sub x}Fe{sub 3–x}O{sub 4} epitaxial films are governed by the oxidation state and the film structure at the vicinity of the interface.
Authors:
; ; ; ;  [1]
  1. Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan)
Publication Date:
OSTI Identifier:
22273836
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 17; Conference: 55. annual conference on magnetism and magnetic materials, Atlanta, GA (United States), 14-18 Nov 2010; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANISOTROPY; COBALT COMPOUNDS; CONCENTRATION RATIO; CRYSTAL STRUCTURE; ELECTRON DIFFRACTION; EPITAXY; FERRITES; INTERFACES; LAYERS; MAGNETIC PROPERTIES; MAGNETIZATION; REFLECTION; SPUTTERING; STRAINS; SURFACES; THIN FILMS; VALENCE