skip to main content

SciTech ConnectSciTech Connect

Title: A study of spin canting in Li{sub 3}Fe{sub 2}(PO{sub 4}){sub 3} with Mössbauer spectroscopy under 5 T

Li{sub 3}Fe{sub 2}(PO{sub 4}){sub 3} has been actively studied as a Lithium ion battery cathode material for the next-generation energy storage application. Here, we have investigated the changes of magnetic coupling between two different magnetic sub-lattices in Li{sub 3}Fe{sub 2}(PO{sub 4}){sub 3} with x-ray diffraction (XRD), superconducting quantum interference device (SQUID), and Mössbauer spectroscopy measurements. The experimental XRD pattern was analyzed using Rietveld refinement, confirming single phase. In order to investigate the magnetic property, the SQUID measurement under applied field of 5 T was performed between 4.2 and 295 K. From the temperature-dependent zero-field-cooled and field-cooled magnetization curves, we observed the magnetization decreasing with increasing temperature up to T{sub min} = 13 K, at which the magnetization showed a minimum value. With continuing increase in temperature, the magnetization starts increasing with a maximum value at T{sub max} = 28 K and beyond T{sub max}, the magnetization decreases with the further increase in temperature. Based on the experimentally measured Mössbauer spectra, we identified that the ratios of first and sixth to second and fifth absorption lines were identical around T{sub min}, while with increasing temperature the area of second and fifth absorption line rapidly decreased up to T{sub max}. Our study suggests that the spin canting angle between themore » applied field and hyperfine field of Li{sub 3}Fe{sub 2}(PO{sub 4}){sub 3} is constant up to T{sub min}. However, the spin canting angle starts decreasing with increasing temperature, reaching a minimum value at T{sub max}, and beyond T{sub max} it is increasing. We expect that around T{sub max}, the ferrimagnetically coupled spin arrangement is appeared to be collinear along the applied field direction under applied field of 5 T.« less
Authors:
;  [1]
  1. Department of Physics, Kookmin University, Seoul 136-702 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22273807
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 17; Conference: 55. annual conference on magnetism and magnetic materials, Atlanta, GA (United States), 14-18 Nov 2010; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION SPECTROSCOPY; COUPLING; IRON COMPOUNDS; LITHIUM COMPOUNDS; MAGNETIC FIELDS; MAGNETIC PROPERTIES; MAGNETIZATION; PHOSPHATES; SPIN; SQUID DEVICES; TEMPERATURE DEPENDENCE; X-RAY DIFFRACTION