skip to main content

Title: Effect of Dy/Nd double layer on coercivity in Nd-Fe-B thin films

The Nd-Fe-B (t{sub NFB} = 30 nm)/[Dy (t{sub Dy} nm)/Nd (t{sub Nd} nm)] (t{sub Dy/Nd} = 20 nm) (thickness t{sub Dy} = 0–10 nm) thin films were deposited on Al{sub 2}O{sub 3}(0001) substrate and subsequently in-situ annealed at 470 °C. As-deposited Nd-Fe-B thin films with a highly perpendicular orientation of c-axis were deposited by introducing bcc-Mo(111) single crystal buffer layer. After post-annealing, the grain size of the Nd-Fe-B/Dy/Nd thin films with the t{sub Dy} = 10 nm and t{sub Nd} = 10 nm becomes large due to the Dy and the Nd atoms thermal diffusion, while DyFe{sub 2} and Dy oxide compounds are formed in Nd-Fe-B layers, which is confirmed by means of a combination of atomic force microscopy observation and X-ray diffraction measurement. The H{sub c} of Nd-Fe-B/Dy/Nd thin films with the t{sub Dy} = 10 nm and t{sub Nd} = 10 nm was approximately the same value of the Nd-Fe-B thin films without Dy/Nd double layer annealed at 470 °C. On the other hand, H{sub c} is enhanced to be about 22.1 kOe in the annealed Nd-Fe-B/Dy/Nd films with the t{sub Dy} = 0.8 nm and t{sub Nd} = 19.2 nm.
Authors:
; ; ; ; ;  [1] ; ;  [2]
  1. Department of Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510 (Japan)
  2. Department of Applied Physics, Tohoku University, Sendai, 980-8579 (Japan)
Publication Date:
OSTI Identifier:
22273790
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 17; Conference: 55. annual conference on magnetism and magnetic materials, Atlanta, GA (United States), 14-18 Nov 2010; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM OXIDES; ANNEALING; APPROXIMATIONS; ATOMIC FORCE MICROSCOPY; BCC LATTICES; COERCIVE FORCE; DYSPROSIUM; GRAIN SIZE; INTERMETALLIC COMPOUNDS; IRON BORIDES; LAYERS; MOLYBDENUM 111; MONOCRYSTALS; NEODYMIUM; NEODYMIUM COMPOUNDS; ORIENTATION; SUBSTRATES; THERMAL DIFFUSION; THIN FILMS; X-RAY DIFFRACTION