skip to main content

SciTech ConnectSciTech Connect

Title: Spectroscopic ellipsometry determination of the optical constants of titanium-doped WO{sub 3} films made by co-sputter deposition

Titanium (Ti) doped tungsten oxide (WO{sub 3}) thin films were grown by co-sputter deposition of W and Ti metal targets. The sputtering powers to the W and Ti were kept constant at 100 W and 50 W, respectively, while varying the growth temperature (T{sub s}) in the range of 25–400 °C. The structural quality of Ti-doped WO{sub 3} films is dependent on T{sub s}. Ti-doped WO{sub 3} films grown at T{sub s} < 400 °C were amorphous. A temperature of 400 °C is critical to promote the structural order and formation of monoclinic, nanocrystalline films. The optical constants and their dispersion profiles determined from spectroscopic ellipsometry indicate that there is no significant inter-diffusion at the film-substrate interface for W-Ti oxide film growth of ∼40 nm. The index refraction (n) at λ = 550 nm varies in the range of 2.15–2.40 with a gradual increase in T{sub s}. Lorentz-Lorenz analysis (n{sub (λ)} = 550 nm) of the data indicates the gradual improvement in the packing density coupled with structural transformation accounts for the observed optical quality of the Ti-doped WO{sub 3} films as a function of T{sub s}. A correlation between the growth conditions and optical constants is discussed.
Authors:
; ; ;  [1]
  1. Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)
Publication Date:
OSTI Identifier:
22273654
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 13; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; CORRELATIONS; CRYSTAL GROWTH; CRYSTALS; DEPOSITION; DIFFUSION; DOPED MATERIALS; ELLIPSOMETRY; INTERFACES; MONOCLINIC LATTICES; NANOSTRUCTURES; PHASE TRANSFORMATIONS; SPUTTERING; THIN FILMS; TITANIUM; TUNGSTEN OXIDES