skip to main content

Title: Energy gaps in α-graphdiyne nanoribbons

α-graphdiyne is a novel predicted Dirac cone material, which is similar to graphene. But the absence of a band gap significantly limits its practical applications. In order to extend this limitation, an opening of energy gap is needed. To this end, we resort to the nanoribbon structure of α-graphdiyne. This is a conventional proposal to open up the energy gaps in nanomaterials. The results show that both the armchair and the zigzag α-graphdiyne nanoribbons do generate energy gaps, which are width-dependent. In addition, the underlying mechanism of this opening is explored. The former is ascribed to the combination of quantum confinement and edges' effect, while the latter arises from the edge magnetic ordering. These novel nanoribbons with opening energy gaps would be potentially used in electronic devices.
Authors:
; ; ;  [1]
  1. Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)
Publication Date:
OSTI Identifier:
22273619
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 14; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ELECTRONIC EQUIPMENT; ELECTRONIC STRUCTURE; ENERGY GAP; GRAPHENE; MAGNETISM; MAGNETIZATION; NANOSTRUCTURES