skip to main content

Title: Effect of the V{sub As}V{sub Ga} complex defect doping on properties of the semi-insulating GaAs

The different position V{sub As}V{sub Ga} cluster defect doping in semi-insulating (SI) GaAs has been studied by first-principles calculation based on hybrid density functional theory. Our calculated results show that EL6 level is formed due to the V{sub As}V{sub Ga} complex defect, which is very close to the experimental result. It provides the explanation of the absorption of laser with the wavelength beyond in semi-insulating GaAs. The formation energy of V{sub As}V{sub Ga} complex defect is found to decrease from surface to interior gradually. The conduction band minima and valence band maxima of GaAs (001) surface with the V{sub As}V{sub Ga} complex defect are all located at Γ point, and some defect levels are produced in the forbidden band. In contrast, the conduction band minima and valence band maxima of GaAs with the interior V{sub As}V{sub Ga} complex defect are not located at the same k-point, so it might involve the change of momentum in the electron transition process. The research will help strengthen the understanding of photoelectronic properties and effectively guide the preparation of the SI-GaAs materials.
Authors:
; ; ;  [1]
  1. Department of Applied Physics, Xi'an University of Technology, Xi'an 710054 (China)
Publication Date:
OSTI Identifier:
22273567
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 15; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; DENSITY FUNCTIONAL METHOD; ELECTRONIC STRUCTURE; ELECTRONS; ENERGY GAP; FORMATION HEAT; GALLIUM ARSENIDES; SEMICONDUCTOR MATERIALS; SILICON; SURFACES; VACANCIES; VALENCE