skip to main content

SciTech ConnectSciTech Connect

Title: Reduction phases of thin iron-oxide nanowires upon thermal treatment and Li exposure

Iron oxide nanostructures, a promising alternative to carbon-based anode in lithium-ion batteries, can be produced using a hard template route. This procedure guarantees the formation of Fe{sub 2}O{sub 3} nanowires with comparable diameter and size (average diameter 8 nm) with a dominant cubic γ-phase at the surface. Lithium exposure of the iron oxide nanowires in ultra-high-vacuum (UHV) conditions induces reduction of the Fe ion, leading to a Fe{sub 3}O{sub 4} and then to a Fe{sup 2+} phase, as determined by means of core-level photoemission spectroscopy. Mild annealing of Fe{sub 2}O{sub 3} in UHV determines an oxygen content reduction for the nanowires at lower temperature with respect to the bulk phase. The morphology and the evolution of the electronic properties upon reduction have been compared to those of micro-sized bulk-like grains, to unravel the role of the reduced size and surface-volume ratio.
Authors:
; ;  [1] ; ; ;  [2] ;  [3] ;  [4]
  1. Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)
  2. Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)
  3. IIT, Istituto Italiano di Tecnologia, Genova (Italy)
  4. Dipartimento di Fisica, CNISM, CNIS, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)
Publication Date:
OSTI Identifier:
22273537
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ANNEALING; ANODES; CARBON; COMPARATIVE EVALUATIONS; EMISSION SPECTROSCOPY; IRON IONS; IRON OXIDES; LITHIUM; MORPHOLOGY; OXYGEN; PHOTOEMISSION; PRESSURE RANGE MICRO PA; PRESSURE RANGE MILLI PA; QUANTUM WIRES; SURFACES