skip to main content

Title: Numerical study of the influence of applied voltage on the current balance factor of single layer organic light-emitting diodes

Current balance factor (CBF) value, the ratio of the recombination current density and the total current density of a device, has an important function in fluorescence-based organic light-emitting diodes (OLEDs), as well as in the performance of the organic electrophosphorescent devices. This paper investigates the influence of the applied voltage of a device on the CBF value of single layer OLED based on the numerical model of a bipolar single layer OLED with organic layer trap free and without doping. Results show that the largest CBF value can be achieved when the electron injection barrier (ϕ{sub n}) is equal to the hole injection barrier (ϕ{sub p}) in the lower voltage region at any instance. The largest CBF in the higher voltage region can be achieved in the case of ϕ{sub n} > ϕ{sub p} under the condition of electron mobility (μ{sub 0n}) > hole mobility (μ{sub 0p}), whereas the result for the case of μ{sub 0n} < μ{sub 0p}, is opposite. The largest CBF when μ{sub 0n} = μ{sub 0p} can be achieved in the case of ϕ{sub n} = ϕ{sub p} in the entire region of the applied voltage. In addition, the CBF value of the device increases with increasing applied voltage. The results obtained in thismore » paper can present an in-depth understanding of the OLED working mechanism and help in the future fabrication of high efficiency OLEDs.« less
Authors:
; ;  [1]
  1. College of Physics and Information Science, Tianshui Normal University, Tianshui 741001 (China)
Publication Date:
OSTI Identifier:
22273516
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CURRENT DENSITY; ELECTRIC CURRENTS; ELECTRIC POTENTIAL; ELECTRON BEAM INJECTION; ELECTRON MOBILITY; FLUORESCENCE; HOLE MOBILITY; HOLES; LAYERS; LIGHT EMITTING DIODES; NUMERICAL ANALYSIS; RECOMBINATION; TRAPS