skip to main content

SciTech ConnectSciTech Connect

Title: SOLAR SYSTEM MOONS AS ANALOGS FOR COMPACT EXOPLANETARY SYSTEMS

The field of exoplanetary science has experienced a recent surge of new systems that is largely due to the precision photometry provided by the Kepler mission. The latest discoveries have included compact planetary systems in which the orbits of the planets all lie relatively close to the host star, which presents interesting challenges in terms of formation and dynamical evolution. The compact exoplanetary systems are analogous to the moons orbiting the giant planets in our solar system, in terms of their relative sizes and semimajor axes. We present a study that quantifies the scaled sizes and separations of the solar system moons with respect to their hosts. We perform a similar study for a large sample of confirmed Kepler planets in multi-planet systems. We show that a comparison between the two samples leads to a similar correlation between their scaled sizes and separation distributions. The different gradients of the correlations may be indicative of differences in the formation and/or long-term dynamics of moon and planetary systems.
Authors:
;  [1] ;  [2]
  1. Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States)
  2. CNRS, UMR 5804, Laboratoire d'Astrophysique de Bordeaux, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex (France)
Publication Date:
OSTI Identifier:
22273297
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (New York, N.Y. Online); Journal Volume: 146; Journal Issue: 5; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCURACY; ASTRONOMY; ASTROPHYSICS; COMPARATIVE EVALUATIONS; CORRELATIONS; MOON; ORBITS; PHOTOMETRY; PLANETS; SOLAR SYSTEM; SOLAR SYSTEM EVOLUTION; STARS