skip to main content

Title: MOJAVE. X. PARSEC-SCALE JET ORIENTATION VARIATIONS AND SUPERLUMINAL MOTION IN ACTIVE GALACTIC NUCLEI

We describe the parsec-scale kinematics of 200 active galactic nucleus (AGN) jets based on 15 GHz Very Long Baseline Array (VLBA) data obtained between 1994 August 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGNs from the MOJAVE and 2 cm Survey programs. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12-16 yr interval, ranging from 10° to 150° on the sky, corresponding to intrinsic variations of ∼0.°5 to ∼2°. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5-12 yr), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at leastmore » five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1 mas yr{sup –1}), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the dispersion, implying that the features have a range of Lorentz factor and/or pattern speed. Very slow pattern speed features are rare, comprising only 4% of the sample, and are more prevalent in radio galaxy and BL Lac jets. We confirm a previously reported upper envelope to the distribution of speed versus beamed luminosity for moving jet features. Below 10{sup 26} W Hz{sup –1} there is a fall-off in maximum speed with decreasing 15 GHz radio luminosity. The general shape of the envelope implies that the most intrinsically powerful AGN jets have a wide range of Lorentz factors up to ∼40, while intrinsically weak jets are only mildly relativistic.« less
Authors:
;  [1] ; ;  [2] ;  [3] ;  [4] ;  [5] ; ; ;  [6]
  1. Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)
  2. Department of Astronomy, University of Michigan, 817 Dennison Building, Ann Arbor, MI 48109 (United States)
  3. Department of Physics, Denison University, Granville, OH 43023 (United States)
  4. National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)
  5. Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation)
  6. Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)
Publication Date:
OSTI Identifier:
22273295
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (New York, N.Y. Online); Journal Volume: 146; Journal Issue: 5; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCELERATION; ASTRONOMY; ASTROPHYSICS; BL LACERTAE OBJECTS; COMPARATIVE EVALUATIONS; GALAXY NUCLEI; GHZ RANGE; JETS; LUMINOSITY; ORIENTATION; PERIODICITY; PROPER MOTION; QUASARS; RADIO GALAXIES; RELATIVISTIC RANGE; VELOCITY