skip to main content

SciTech ConnectSciTech Connect

Title: A new Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} based lead-free piezoelectric system with calculated end-member Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3}

The phase structure, dielectric and piezoelectric properties of a new lead-free piezoelectric system (1 − x)Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}–xBi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} [(1 − x)BNT–xBZH, x = 0, 0.01, 0.02, 0.03, and 0.04] were investigated. The structure of Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} was calculated using first-principles method and (1 − x)BNT–xBZH ceramics were fabricated by conventional solid-state process. At room temperature, a morphotropic phase boundary (MPB) from rhombohedral to pseudocubic is identified near x = 0.02 by the analysis of X-ray diffraction patterns. The ceramics with MPB near room temperature exhibit excellent electrical properties: the Curie temperature, maximum polarization, remnant polarization, and coercive field are 340 °C, 56.3 μC/cm{sup 2}, 43.5 μC/cm{sup 2}, and 5.4 kV/mm, respectively, while the maximum positive bipolar strain and piezoelectric coefficient are 0.09% and 92 pC/N, respectively. In addition, a linear relationship between the MPB phase boundary composition and the calculated tetragonality of non-BNT end-member was demonstrated. Thus, this study not only shows a new BNT-based lead-free piezoelectric system but also suggest a new way to predict the composition at MPB a priori when designing new lead-free piezoelectric system.
Authors:
 [1] ;  [2] ; ;  [1]
  1. The Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22271320
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 11; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BISMUTH COMPOUNDS; CERAMICS; CURIE POINT; DIELECTRIC MATERIALS; ELECTRICAL PROPERTIES; HAFNIUM OXIDES; PIEZOELECTRICITY; POLARIZATION; SODIUM COMPOUNDS; SOLIDS; STRAINS; TEMPERATURE RANGE 0273-0400 K; TITANATES; TRIGONAL LATTICES; X-RAY DIFFRACTION; ZINC OXIDES