skip to main content

SciTech ConnectSciTech Connect

Title: Superconducting and magneto-transport properties of BiS{sub 2} based superconductor PrO{sub 1-x}F{sub x}BiS{sub 2} (x = 0 to 0.9)

We report superconducting properties of PrO{sub 1-x}F{sub x}BiS{sub 2} compounds, synthesized by the vacuum encapsulation technique. The synthesized PrO{sub 1-x}F{sub x}BiS{sub 2} (x = 0.1, 0.3, 0.5, 0.7, and 0.9) samples are crystallized in a tetragonal P4/nmm space group. Both transport and DC magnetic susceptibility measurements showed bulk superconductivity below 4 K. The maximum T{sub c} is obtained for x = 0.7 sample. Under applied magnetic field, both T{sub c}{sup onset} and T{sub c} (ρ = 0) decrease to lower temperatures. We estimated highest upper critical field [H{sub c2}(0)] for PrO{sub 0.3}F{sub 0.7}BiS{sub 2} sample to be above 4 T (Tesla). The thermally activated flux flow activation energy (U{sub 0}) is estimated 54.63 meV in 0.05 T field for PrO{sub 0.3}F{sub 0.7}BiS{sub 2} sample. Hall measurement results showed that electron charge carriers are the dominating ones in these compounds. Thermoelectric effects (Thermal conductivity and Seebeck coefficient) data suggest strong electron-electron correlations in this material.
Authors:
; ;  [1]
  1. CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India)
Publication Date:
OSTI Identifier:
22271290
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ACTIVATION ENERGY; BISMUTH SULFIDES; CHARGE CARRIERS; CONCENTRATION RATIO; CRITICAL FIELD; ELECTRON CORRELATION; ELECTRONS; MAGNETIC SUSCEPTIBILITY; MAGNETORESISTANCE; PRASEODYMIUM FLUORIDES; PRASEODYMIUM OXIDES; SUPERCONDUCTIVITY; SUPERCONDUCTORS; TETRAGONAL LATTICES; THERMAL CONDUCTIVITY