skip to main content

Title: An effective medium study of surface plasmon polaritons in nanostructured gratings using attenuated total reflection

Recent work studied surface plasmon resonances in structured materials by the method of attenuated total reflection using a prism on top of a metallic grating. That calculation considered Transverse Magnetic polarized radiation, involved an expansion in 121 Fourier modes, and found a number of interesting features. Many of these features were attributed to localized plasmons or other factors, which arise from a discrete structure. We use a simple effective medium theory to address the same problem, and find many of the same reflection features observed in the more complex calculation, indicating that localization is not an important factor. We also evaluate the possibility of using some of the new features in the reflection spectrum for bio-sensing and find that the sensitivity of the system to small changes in relative permittivity is increased compared to some standard methods.
Authors:
; ;  [1]
  1. UCCS BioFrontiers Center, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918 (United States)
Publication Date:
OSTI Identifier:
22271281
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ABSORPTION SPECTRA; COMPARATIVE EVALUATIONS; NANOSTRUCTURES; PERMITTIVITY; PLASMONS; POLARONS; REFLECTION; RESONANCE; SURFACES