skip to main content

SciTech ConnectSciTech Connect

Title: Fabrication of single crystalline, uniaxial single domain Co nanowire arrays with high coercivity

Whilst Co nanorods with high coercivity were synthesized during recent years, they did not achieve the same results as for Co nanowires embedded in solid templates. In the present work, Co nanowire arrays (NWAs) with high coercivity were successfully fabricated in porous aluminum oxide template under optimum conditions by using pulsed ac electrodeposition technique. Magnetic properties and crystalline characteristics of the nanowires were investigated by hysteresis loop measurements, first-order reversal curve (FORC) analysis, X-ray diffraction (XRD), and selected area electron diffraction (SAED) patterns. Hysteresis loop measurements showed high coercivity of about 4.8 kOe at room temperature together with optimum squareness of 1, resulting in an increase of the previous maximum coercivity for Co NWAs up to 45%. XRD and SAED patterns revealed a single crystalline texture along the [0002] direction, indicating the large magnetocrystalline anisotropy. On the other hand, FORC analysis confirmed a single domain structure for the Co NWAs. In addition, the reversal mechanism of the single crystalline, single domain Co NWAs was studied which resulted in the fixed easy axis with a coherent rotation. Accordingly, these nanowires might offer promising applications in high density bit patterned media and low power logic devices.
Authors:
;  [1] ;  [2] ;  [3]
  1. Department of Physics, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of)
  2. (Iran, Islamic Republic of)
  3. Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of)
Publication Date:
OSTI Identifier:
22271224
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 11; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM OXIDES; ANISOTROPY; COBALT; COERCIVE FORCE; DOMAIN STRUCTURE; ELECTRODEPOSITION; ELECTRON DIFFRACTION; FABRICATION; HYSTERESIS; MAGNETIC PROPERTIES; MONOCRYSTALS; POROUS MATERIALS; QUANTUM WIRES; TEMPERATURE RANGE 0273-0400 K; X-RAY DIFFRACTION