skip to main content

Title: The electronic transport behavior of hybridized zigzag graphene and boron nitride nanoribbons

In this present work, we have investigated the electronic transport properties of the hybridized structure constructed by the zigzag graphene and boron-nitride (BN) nanoribbons (Z-B{sub n}N{sub m}C{sub p}, n + m + p = 16) through employing nonequilibrium Green's functions in combination with the density-functional theory. The results demonstrate that the electronic transport properties of the hybridized Z-B{sub n}N{sub m}C{sub p} nanoribbons are strongly dependent on the width of boron-nitride or graphene nanoribbons. When the numbers of n and m are not equal, the negative differential resistance behavior is observed, which can be modulated by varying the width of BN nanoribbons. The conductance of the hybridized Z-B{sub n}N{sub m}C{sub p} nanoribbons with odd numbers of zigzag carbon chains also increases by the width of BN nanoribbons.
Authors:
 [1] ;  [2] ; ; ;  [1] ;  [2] ;  [3]
  1. School of Optical and Electronic Information, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China)
  2. (China)
  3. Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 (China)
Publication Date:
OSTI Identifier:
22271189
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 11; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; BORON NITRIDES; DENSITY FUNCTIONAL METHOD; ELECTRIC CONDUCTIVITY; GRAPHENE; GREEN FUNCTION; NANOSTRUCTURES