skip to main content

SciTech ConnectSciTech Connect

Title: Temperature dependent deformation mechanisms in pure amorphous silicon

High temperature nanoindentation has been performed on pure ion-implanted amorphous silicon (unrelaxed a-Si) and structurally relaxed a-Si to investigate the temperature dependence of mechanical deformation, including pressure-induced phase transformations. Along with the indentation load-depth curves, ex situ measurements such as Raman micro-spectroscopy and cross-sectional transmission electron microscopy analysis on the residual indents reveal the mode of deformation under the indenter. While unrelaxed a-Si deforms entirely via plastic flow up to 200 °C, a clear transition in the mode of deformation is observed in relaxed a-Si with increasing temperature. Up to 100 °C, pressure-induced phase transformation and the observation of either crystalline (r8/bc8) end phases or pressure-induced a-Si occurs in relaxed a-Si. However, with further increase of temperature, plastic flow rather than phase transformation is the dominant mode of deformation. It is believed that the elevated temperature and pressure together induce bond softening and “defect” formation in structurally relaxed a-Si, leading to the inhibition of phase transformation due to pressure-releasing plastic flow under the indenter.
Authors:
; ; ;  [1]
  1. Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)
Publication Date:
OSTI Identifier:
22271185
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 115; Journal Issue: 11; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; AMORPHOUS STATE; DEFORMATION; ION IMPLANTATION; PHASE TRANSFORMATIONS; PRESSURE DEPENDENCE; RAMAN SPECTROSCOPY; SILICON; TEMPERATURE DEPENDENCE; TRANSMISSION ELECTRON MICROSCOPY