skip to main content

SciTech ConnectSciTech Connect

Title: A comparative study of lock-in-amplifiers and improved duffing chaotic oscillators for the detection and processing of weak signals

The measurement of multiphase flow parameters is of great importance in a wide range of industries. In the measurement of multiphase, the signals from the sensors are extremely weak and often buried in strong background noise. It is thus desirable to develop effective signal processing techniques that can detect the weak signal from the sensor outputs. In this paper, two methods, i.e., lock-in-amplifier (LIA) and improved Duffing chaotic oscillator are compared to detect and process the weak signal. For sinusoidal signal buried in noise, the correlation detection with sinusoidal reference signal is simulated by using LIA. The improved Duffing chaotic oscillator method, which based on the Wigner transformation, can restore the signal waveform and detect the frequency. Two methods are combined to detect and extract the weak signal. Simulation results show the effectiveness and accuracy of the proposed improved method. The comparative analysis shows that the improved Duffing chaotic oscillator method can restrain noise strongly since it is sensitive to initial conditions.
Authors:
; ;  [1]
  1. School of Control and Computer Engineering, North China Electric Power University, Beijing (China)
Publication Date:
OSTI Identifier:
22271106
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1592; Journal Issue: 1; Conference: 8. international symposium on measurement techniques for multiphase flows, Guangzhou (China), 13-15 Dec 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ACCURACY; BACKGROUND NOISE; CHAOS THEORY; COMPARATIVE EVALUATIONS; CORRELATIONS; DATA PROCESSING; LOCK-IN AMPLIFIERS; MULTIPHASE FLOW; OSCILLATORS; SENSORS; SIGNALS; WAVE FORMS