skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4873852· OSTI ID:22270988
; ;  [1];  [2];  [3]
  1. Robert Bosch GmbH, Corporate Sector Research and Advance Engineering - Advance Production Technology 1 - Plastics Engineering (CR/APP), Postbox 1131, 71301 Waiblingen (Germany)
  2. Department of Material Science, Darmstadt University of Technology (Germany)
  3. Department of Management and Engineering, University of Padova (Italy)

The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology.

OSTI ID:
22270988
Journal Information:
AIP Conference Proceedings, Vol. 1593, Issue 1; Conference: PPS-29: 29. international conference of the Polymer Processing Society, Nuremberg (Germany), 15-19 Jul 2013; Other Information: (c) 2014 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English