skip to main content

SciTech ConnectSciTech Connect

Title: KEPLER PLANETS: A TALE OF EVAPORATION

Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planetmore » sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M{sub ⊕} and the majority of them should have core masses of a few Earth masses.« less
Authors:
 [1] ;  [2]
  1. Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)
  2. Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)
Publication Date:
OSTI Identifier:
22270845
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 775; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTRONOMY; ASTROPHYSICS; COMPARATIVE EVALUATIONS; CORRELATIONS; HYDROGEN; IRRADIATION; MASS TRANSFER; PLANETS; RADIAL VELOCITY; STARS; STELLAR CHROMOSPHERES; STELLAR WINDS; X RADIATION