skip to main content

Title: REVISITING THE LIGHT CURVES OF GAMMA-RAY BURSTS IN THE RELATIVISTIC TURBULENCE MODEL

Rapid temporal variability has been widely observed in the light curves of gamma-ray bursts (GRBs). One possible mechanism for such variability is related to the relativistic eddies in the jet. In this paper, we include the contribution of the inter-eddy medium together with the eddies to the gamma-ray emission. We show that the gamma-ray emission can either lead or lag behind the observed synchrotron emission, where the latter originates in the inter-eddy medium and provides most of the seed photons for producing gamma-ray emission through inverse Compton scattering. As a consequence, we argue that the lead/lag found in non-stationary short-lived light curves may not reveal the intrinsic lead/lag of different emission components. In addition, our results may explain the lead of gamma-ray emission with respect to optical emission observed in GRB 080319B.
Authors:
; ; ; ; ;  [1]
  1. Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)
Publication Date:
OSTI Identifier:
22270725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 776; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTROPHYSICS; COMPTON EFFECT; COSMIC GAMMA BURSTS; GAMMA ASTRONOMY; GAMMA RADIATION; JETS; PHOTON EMISSION; RELATIVISTIC RANGE; TURBULENCE; VISIBLE RADIATION